Point processes with Gaussian boson sampling
نویسندگان
چکیده
منابع مشابه
Boson sampling from a Gaussian state.
We pose a randomized boson-sampling problem. Strong evidence exists that such a problem becomes intractable on a classical computer as a function of the number of bosons. We describe a quantum optical processor that can solve this problem efficiently based on a Gaussian input state, a linear optical network, and nonadaptive photon counting measurements. All the elements required to build such a...
متن کاملA detailed study of Gaussian Boson Sampling
Since the development of Boson sampling, there has been a quest to construct more efficient and experimentally feasible protocols to test the computational complexity of sampling from photonic states. In this paper we interpret and extend the results presented in [Phys. Rev. Lett. 119, 170501 (2017)]. We derive an expression that relates the probability to measure a specific photon output patte...
متن کاملScalable Nonparametric Bayesian Inference on Point Processes with Gaussian Processes
In this paper we propose an efficient, scalable non-parametric Gaussian process model for inference on Poisson point processes. Our model does not resort to gridding the domain or to introducing latent thinning points. Unlike competing models that scale as O(n) over n data points, our model has a complexity O(nk) where k n. We propose a MCMC sampler and show that the model obtained is faster, m...
متن کاملSampling Independent Increment Processes without Gaussian Component
It is well known that any process with right continuous paths has at most a finite number of jumps greater than ε (> 0). Based on this fact, it is proved that any non negative independent increment processes without gaussian component (Lévy Process) can be almost everywhere approximated by a sequence of compound Poisson process, aside from fixed points of discontinuity. An algorithm to generate...
متن کاملOptimal change point detection in Gaussian processes
We study the problem of detecting a change in the mean of one-dimensional Gaussian process data. This problem is investigated in the setting of increasing domain (customarily employed in time series analysis) and in the setting of fixed domain (typically arising in spatial data analysis). We propose a detection method based on the generalized likelihood ratio test (GLRT), and show that our meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2020
ISSN: 2470-0045,2470-0053
DOI: 10.1103/physreve.101.022134